C++ OOP API Example
This example briefly demonstrates how to use the NeoPDF
C++ Object Oriented (OOP) API to load and evaluate parton
distributions. More examples can be found in neopdf_capi/tests.
Prerequisites
Build and install the C++ API as described in the installation guide. The C++ OOP header is needed for the following examples.
Example 1: Loading and Evaluating PDFs
This example demonstrates the use of the NeoPDF
C++ OOP API to load both single and multiple PDF
members, evaluate parton distributions for a range of \(x\) and \(Q^2\) values, and compare results
to LHAPDF.
Technical details:
- The
NeoPDF
andNeoPDFs
objects manage their own memory and automatically release resources when they go out of scope (RAII). - The evaluation of \(x f(x, Q^2)\) and \(\alpha_s(Q^2)\) is vectorized over the input axes for efficiency.
- The code asserts that the results from
NeoPDF
and LHAPDF agree within a tight tolerance, providing a robust validation.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
|
Example 2: Filling and Writing a NeoPDF Grid
This example illustrates how to fill and write a NeoPDF
grid using the C++ OOP API. It
demonstrates the process of constructing a grid for each PDF member and serializing the
collection to disk.
The filling of the PDF grid in the following example assumes no dependence in the nucleon numbers \(A\) and strong coupling \(\alpha_s\) (standard LHAPDF-like PDF). Refer to the Section below in the case the grid should explicitly depend on more parameters.
Technical details:
- The grid axes are defined as vectors for \(x\), \(Q^2\), parton IDs, nucleons, and \(\alpha_s\) values.
- The grid data is stored in a 6D array, with the layout
[nucleons][alphas][pids][kT][xs][q2s]
. - The
GridWriter
class manages the collection of grids and handles compression and serialization to disk. - Metadata is filled in a
MetaData
object, which includes information about the set, axis ranges, flavors, and interpolation type. This metadata is essential for correct interpretation of the grid file. - All memory management is automatic; no manual deallocation is required.
- The output file is compressed and written in the
.neopdf.lz4
format, suitable for use withNeoPDF
(CLI) tools and APIs.
NOTE
The following example fills the NeoPDF
grid by re-computing the values of the subgrids
from another set. This makes it possible to explicitly check that the filling of the grid
is correct. However, this makes the codes very verbose. To easily spot the parts that
actually fills the grid, some lines are highlighted.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
|
Filling Grids that depend on Multiple Parameters
In the case where the PDF grid depends on more parameters, the filling of grid_data
in the above example simply now becomes:
Example 3: Filling TMD grids with \(k_T\) Dependence
In the following example, we are going to see how to fill TMD grids which contains a dependence on the transverse momentum \(k_T\). The following example makes use of the TMDlib library to provide the TMD distributions.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|